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Many animal societies have dominance hierarchies in which social rank is cor-

related with size. In such societies, the growth and size of individuals can be a

strategic response to their social environment: in fishes, individuals may

decrease their growth rate to remain small and retain a subordinate position;

in mammals, individuals may increase their growth rate to become large

and attain a dominant position—a strategy called competitive growth. Here,

we investigate whether the clown anemonefish, Amphiprion percula, exhibits

competitive growth also. We show that juvenile clownfish paired with a

size-matched reproductive rival increase their growth rate and size relative

to solitary controls. Remarkably, paired individuals achieved this, despite

being provided with the same amount of food as solitary controls. Our results

demonstrate that clownfish are able to increase their growth rate in response to

social competition. This study adds to the growing body of evidence that the

growth of social vertebrates can be a fine-tuned plastic response to their

social environment.

1. Introduction
In many animal societies, there are dominance hierarchies within which an

individual’s social rank determines its access to reproduction [1–3]. Often, the

social rank of individuals is dependent, either partially or completely, on their

size [4–6]. In these societies, where size and rank influence reproductive success,

there should be strong selection for growth strategies that maximize an individ-

ual’s chances of retaining its current rank or attaining higher rank. In the tomato

anemonefish, Amphiprion frenatus [7], Kalahari meerkats, Suricata suricatta [8],

and the mole-rats Heterocephalus glaber and Fukomys damarensis [9,10], when

females acquire the dominant rank, theymay increase their growth rate to increase

their reproductive output and/or reinforce their position (see also [11,12] for evi-

dence of a similar phenomenon in male fishes). By contrast, in the clown

anemonefish, Amphiprion percula [13], the cooperatively breeding cichlid Neolam-

prologus pulcher [14] and the emerald goby, Paragobiodon xanthosomus [15], within

established dominance hierarchies, subordinate individuals decrease their

growth rate to remain small and retain their current rank. Most recently, it has

been shown that, in Kalahari meerkats, S. suricatta, at the formation of dominance

hierarchies, size-matched individuals increase their growth rate to become large,

outcompete their rivals and attain dominance—a strategy known as competitive

growth [16]. Outstanding questions are, how flexible are these strategies and can

individuals of the same species adopt different strategies in different contexts?

Here, we investigate whether clownfish A. percula are capable of competitive

growth also. Groups of clownfish inhabit sea anemones which afford protection

from predators [17–22]. Each group is composed of a breeding pair and 0–4 non-

breeders [23,24]. Within each group, there is a size-based dominance hierarchy:

the female is largest, themale is second largest, and the non-breeders get progress-

ively smaller [13,25]. Clownfish are protandrous hermaphrodites [4,26]: if the

female of the group dies, then the male changes sex and assumes the position

vacated by the female, and the largest non-breeder from the anemone inherits
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the position vacated by the sex-changing male [23,24]. The size

hierarchy represents a queue to attain dominance: individuals

only ascend in rank when a higher rank individual disappears,

and the smallest fish in the group is always the most recent

recruit [13,23]. A single anecdotal observation suggests that,

on the rare occasions that anemones are vacant, they may be

colonized by size-matched recruits [27]. Under these con-

ditions, the individuals seem to engage in a growing race, the

outcome of which determines which individual becomes

dominant (figure 1). Here, we experimentally test the hypoth-

esis that A. percula individuals paired with size-matched rivals

exhibit competitive growth.

2. Material and methods

(a) Study population
We conducted these experiments at Boston University (Boston,
MA, USA) in November–December 2016 and 2017. All fish
used in these experiments were reared from broodstock wild-
caught as non-breeders (less than 30 mm in standard length) in
Papua New Guinea and supplied by Quality Marine and Sea
Dwelling Creatures. The removal of non-breeders is considered
a sustainable practice. A detailed description of broodstock
housing conditions and larval rearing conditions can be found
elsewhere [28,29].

(b) Housing conditions
Experimental fish, reared in the laboratory, were housed in 1 l
tanks which were part of a re-circulating saltwater aquarium
system. Flow through each tank was approximately 9 l h21

+

0.5 l. Abiotic conditions were monitored regularly and main-
tained as constant as possible: pH ¼ 8.1+0.1, temperature ¼
26.1+0.68C and salinity ¼ 32+0.5 ppt were monitored daily;
ammonia (0 ppm), nitrite (0 ppm) and nitrate (0 ppm) were mon-
itored weekly (API test kits, Mars Fishcare, North America).
Lighting was provided by ambient fluorescent lighting and the
room was maintained on a 12 h L : 12 h D light cycle. The life
support system consisted of a biomedia bed for biological
filtration and a UV sterilizer for disinfection.

(c) Experimental set-up
To test the hypothesis that juvenile clownfish will exhibit competi-
tive growth, we conducted two experiments: the first in 2016;
the second in 2017 to demonstrate the repeatability of the results.
Wemeasured the initial standard length (ISL) of 27 juvenile clown-
fish towithin 0.1 mmusing amicroscope and ImageJ [30].We then
formed nine trios (nine replicates), within which the fish were
length-matched. For each replicate, two fish were housed as a
pair in one tank and the third fish was housed solitarily in another
tank. The fish could not see individuals in other tanks. All 27
individuals were fed the same ration of fish pellets: six C1 pellets
(840–1410 mm) in 2016; 0.1 g of B1 pellets (250–360 mm) in 2017;
TDO Chroma Boost, APBreed, Reed Mariculture Inc., CA, USA,
in both years. The pair was divided by a partition during feeding;
a partition was also placed in the singleton tank during feeding as
a sham control. After feeding, the partitions were removed. When
aggressionwas observed between individuals, the experimentwas
stopped (after two weeks in 2016; after three weeks in 2017). The
final standard length (FSL) of all surviving individuals (n ¼ 6 repli-
cates and n ¼ 18 individuals in 2016; n ¼ 7 replicates and n ¼ 21
individuals in 2017) was measured to within 0.1 mm using a
microscope and ImageJ. Within pairs, we assigned each individual
to a type (pair-rank-1, P1; or, pair-rank-2, P2) on the basis of their
FSL, with the larger being P1.

(d) Statistical analyses
To test the hypothesis that juvenile clownfish will exhibit com-
petitive growth, we used a mixed-effects ANOVA with FSL as
the dependent variable and type of individual (pair-rank-1, P1;
pair-rank-2, P2; or solitary, S) as the independent variable (R ver-
sion 3.3.1). To account for the lack of independence among
individuals from the same replicate, we entered replicate ID as
a random effect using the R package lme4 [31,32]. The data
from the two experiments (two years) were analysed separately
because pooling the data from the two years would have resulted
in a non-normal (bi-modal) distribution.

3. Results

(a) Experiment 1: 2016
The type of individual was a significant predictor of FSL

(mixed-effects ANOVA: type of individual, F2,10 ¼ 6.918, p ¼

0.0130). The parameter estimates indicated that while P1

tended to be larger than P2 (Tukey’s HSD (honestly significant

difference): p . 0.05) and P2 tended to be larger than S

(Tukey’s HSD: p . 0.05), P1 was significantly larger than

S (Tukey’s HSD: p ¼ 0.0106; figure 2a). The whole model

explained an estimated 94.7%of the variation in FSL; a reduced

model including only the random effect explained 89.4% of the

variation; a reduced model including only the fixed effect

explained 4.3% of the variation.

(b) Experiment 2: 2017
The type of individual was a significant predictor of FSL

(mixed-effects ANOVA: type of individual, F2,12¼ 26.1925,

p, 0.00001). The parameter estimates indicated that P1 was

significantly larger than P2 (Tukey’s HSD: p ¼ 0.0021), P2 was

significantly larger than S (Tukey’s HSD: p ¼ 0.0452) and P1

was significantly larger than S (Tukey’s HSD: p, 0.0001;

figure 2b). The whole model explained an estimated 73.7% of

the variation in FSL; a reduced model including only the

random effect explained 0% of the variation; a reduced model

including only the fixed effect explained 67% of the variation.
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Figure 1. Initial standard length and final standard length of clownfish in

the wild (n ¼ 1 replicate, n ¼ 3 individuals). Three individuals are

shown: one that became rank 1 in the pair (P1), one that became rank 2

in the pair (P2) and one that lived solitarily (S). Open circles represent initial

lengths and closed circles represent final lengths. (Illustrations by R.B.)
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4. Discussion
In animal societies where size and rank influence an individ-

ual’s reproductive success, there should be strong selection

for growth strategies that maximize an individual’s chances of

either retaining its current rank or attaining a higher rank—

assuming that such growth plasticity is mechanistically

possible. It is becoming increasingly apparent that labile

growth strategies exist in a variety of social vertebrates [7–16],

raising the question: what are the limits on vertebrate growth

plasticity? The limits appear to be few. Wikelski & Thom [33]

showed that marine iguanas, Amblyrhynchus cristatus, can

shrink during times of low food availability associated with

El Niño events. Buston [13] showed that subordinate clownfish

can reduce their growth rate to remain small, thereby avoiding

conflict with their immediate dominants and retaining current

status. Here, we demonstrate that juvenile clownfish can also

increase their growth rate to become large, thereby outgrowing

a size-matched competitor and attaining dominant status.

We found that clownfish individuals living in pairs grew

faster than singletons, and one individual of the pair grew

faster than the other. While these results were consistent across

the two experiments, there was a difference in the proportion

of the variation in FSL explained by the fixed effects: in 2016,

the majority of the variation in FSL is due to the random

effect, because individuals within replicates were size-matched,

but replicateswere not size-matched; in 2017, themajority of the

variation in FSL is due to the fixed effect, because individuals

within replicates were size-matched and replicates were also

size-matched. This subtle difference in experimental design

between years explains the difference in the significance of

pairwise comparisons and error bars between figure 2a,b also.

Taken together, our results demonstrate that clownfish can exhi-

bit competitive growth and that this can explain a lot of the

variation in the growth and size of individuals.

Given that we focused on testing one hypothesis, it is

important to consider alternative explanations for, and

interpretations of, our data. One possibility is that the lower

growth rate of the singleton relative to the pair could be due

to stress of being held in isolation in captivity. We consider

this unlikely, given that the same pattern was observed in the

field (figure 1), though perhaps the best way to rigorously

test this hypothesis would be to look at endocrine and/or

gene expression profiles of all fish to determine which are the

most stressed. A second possibility is that the higher growth

rate of one individual in the pair relative to the other could

be due to a dominance hierarchy being established almost

immediately after the fish were confined together [34]. Quite

possibly this occurred, but this hypothesis cannot explain

why both individuals in the pair grow faster than the singleton

and this is key evidence for competitive growth (figure 2b).

Our results are consistent with those of Huchard et al. [16],

who demonstrated competitive growth in response to same-

sex rivals in meerkats. While the phenotypic response to

being paired with a size-matched competitor is the same in

clownfish and meerkats, the proximate mechanism must be

different. In the meerkat study, one individual was given an

egg each day and grew more, and in response, the other indi-

vidual increased its foraging rate and growth rate to keep up

[16]. In the clownfish study, all individuals were given the

same food ration, but the pair outgrew the singleton and one

individual of the pair outgrew the other. The fish must be allo-

cating more resources to skeletal growth, which suggests that

there must be a life-history trade-off. Whatever the trade-off,

the long-term benefits of attaining dominant status must

outweigh the short-term costs of accelerated growth.

Our results suggest that individuals may employ a variety

of growth strategies in response to social competition, increas-

ing their growth rate in some contexts while decreasing it in

others. These strategies have been detected multiple times

and might be common in social fishes and cooperative mam-

mals [7–16]. In these societies, especially societies with high

reproductive skew, size and rank strongly influence reproduc-

tive success and there will be strong selection for growth

strategies that maximize an individual’s chances of retaining

its current rank or attaining a higher rank. Such strategies

might be less common in cooperative birds, owing to con-

straints imposed by flight. The key to detecting these

strategies in any system is to track changes in the size of indi-

viduals in response to changes in social rank and group

composition. This study adds to the growing body of evidence

that the growth of social vertebrates can be a fine-tuned plastic

response to their social environment.

Ethics. All work was approved by Boston University’s Institutional
Animal Care and Use Committee (protocol number 17-001).
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Figure 2. (a) Final standard length of clownfish in experiment 1 (n ¼ 6

replicates, n ¼ 18 individuals); (b) Final standard length of clownfish in

experiment 2 (n ¼ 7 replicates, n ¼ 21 individuals). Three types of individ-

uals are shown: those that became rank 1 in the pair (P1), those that became

rank 2 in the pair (P2) and those that lived solitarily (S). Circles represent

observed means and bars represent associated standard errors. ‘*’ The pair-

wise comparison is statistically significant (Tukey’s HSD: p, 0.05); ‘n.s.’

indicates that it is not significant (Tukey’s HSD: p. 0.05).
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